Product Catalog

Types: HRP 30 / HRP 40 / HRP 60 / HRP 80 / HRP 100 Unit Sizes: 3/4 to 2 1/2 Tons

www.omega-heatpump.com

HEAT PUMPS

Notes

Product Catalog

Types: HRP 30 / HRP 40 / HRP 60 / HRP 80 / HRP 100 Unit Sizes: 3/4 to 2 1/2 Tons

Table of Contents

Product Description
Phases of Construction
Features & Product Design
Features
Product Design
Engineering Design
Dimensional Drawings & Conventions
Gold Unit
Silver Unit
Riser Handing & Locations
Performance Data
Electrical Data & Acoustic Data
Electrical Data
Acoustic Data
Specifications & Startup Procedures
Specifications
Startup Procedures

www.omega-heatpump.com

Product Description

Quiet: The entire Omega Gold & Silver Series HRP product line has been developed to provide one of the quietest vertical stacking water source heat pump in the industry. Thousands of installed units prove this fact. Our units, when properly applied and installed, easily meet NC-36-37 within the suite.

Dependable

You can depend on our heat pump systems to provide year round heating and cooling to the occupants of your apartments and condominiums. Simply set the desired temperature and the heat pump will maintain it.

Serviceability

Each HRP unit has its own compressor and fan which are easily accessible through the return air panel. If repairs are required, a spare chassis can be inserted into the unit, allowing it to continuously operate while the damaged chassis is repaired offsite.

Energy Efficient

Unlike fan coil systems, the HRP system has the ability to transfer energy from one zone to another. During moderate weather, the sunny side of a building may require cooling while the shady side requires heating. When approximately one third of the units operate in cooling mode, no external heat is required.

Custom

Our units can be customized to meet the specific requirements of any project. Some options include: variable height dimensions, choice of supply air discharge locations and sizes, ultra quiet return air panel, and remote thermostat control.

Elegant

HRP units are simple to install. Installation progresses perfectly with the phases of building construction. When construction is complete, the unit becomes a seamless part of the room.

Quality

Each Omega Gold & Silver Series unit is tested to the strictest standards to maintain the highest level of quality control. Each unit is checked in a state of the art test facility before it is shipped to the job site. Large scale production accomodates short lead-times and economies of scale enable low costs without sacrificing quality.

Phases of Construction

1eGa

HRP units are simple to install. The installation integrates perfectly with the phases of building construction. The units are installed indoors out of the weather.

Phases of Construction

Casing and Plenum

During the initial stages of construction, the outer casing and plenum are installed.

Walls and Instalation

As the construction progresses, the casing and plenum become part of the interior wall structure.

Furring and Chassis

The final chassis does not have to be installed until the majority of the construction is complete. This helps to prevent damage and allows the contractors to better allocate their workforce.

Completion

When the construction is complete, the HRP unit becomes an integrated part of the room, providing both quiet and reliable comfort to occupants.

eatures totuct	B Design
	E P Man / P MELLAW MANNA P MAN P MA
BION A CONTROL CHICLE DIRECTION OF DIRECTI	IZE 2 TRANST. COVAC/75VA PKOOL ZEDEL MAEDE PLSB65 HELER PROM/TD VA EXHAUST FAN - FIS
MCCBII - STARTER I NICN AUTO CIRC. BREAK. MCCBII - STARTER H5 EEMAC SIZE AUTO CIRC. BREAK. MCCBII - STARTER H5 EEMAC SIZE LBA	LE EEMA SILL - ULL CNTRL TRANSF. 600/I20VAC/75VA 0.8A PK002 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
OM HEAT P	ega oumps

Features

Energy Efficient Design

- High efficiency compressors
- Optimum circuited air to refrigerant coils
- Custom sized thermal expansion systems
- High efficiency blower motors
- Low pressure drop water coaxial coils
- COP/EER meets or exceeds Ashrae 90.1

Space Considerations

- Quiet operation
- Mould resistant insulation
- · Heavy duty cabinet for vibration free operation
- Architecturally pleasing covers and grilles
- Elastomer vibration isolators on compressors
- High quality gasket on chassis
- Air filter
- Choice of air openings
- Riser flexibility

Acoustics

- Gold design available for acoustically sensitive applications
- Silver design for standard applications

Service

- Easy slide out chassis removal and replacement
- Allows spare chassis to be kept in stock for instant replacement
- Controls components in one location
- Plug-in controls
- Run capacitor in front of unit
- Service handles on chassis
- Low clog coaxial coil design
- Quick disconnecting water connections
- Schraeder connections for refrigerant monitoring and servicing
- Factory installed pigtails on control board

Reliability

- Spot welded centrifugal blower
- Rotary or scroll compressors by major manufacturers
- Cased air to refrigerant coil

Environment

- Environmentally friendly refrigerants
- All materials used in the unit are recyclable

Omega Series Heat Pumps are listed by ETL as complying with nationally recognized safety standards for heat pump units.

Product Design

Casing

The sheet metal casing is designed for strength, reliability and functionality. The height may be specified to suit project details and to easily allow vertically stacked installations. The standard material used is galvanized sheet metal with a mould resistant acoustic/thermal insulation. The unit is fabricated tightly to prevent rattling and vibrations.

A variety of aesthetically pleasing front return grilles are available. In addition to providing a finished look, these grilles also provide sound attenuation for a near silent operation. A number of different supply grilles are also available. Standard and custom supply grille openings can be supplied. The casing contains a set of mounting rails for easy installation and removal of the refrigeration chassis. The rails are sized with stops for accurate placement within the unit.

All units come with a heavy duty drain pan.

Acoustics (Gold & Silver)

Omega offers Gold & Silver options in heat pump casing design. For standard applications, the Silver design provides a single solid arrangement cabinet for ease of installation.

For sensitive acoustic applications, the Gold design utilizes a split cabinet arrangements with an acoustically isolated discharge casing to achieve NC levels below 36 to 37.

Compressor

The compressors are selected for their state of the art design, high EER and superior reliability. The size 30 and 40 units use R22 rotary compressors. The size 60, 80 and 100 units use R410 scroll compressors. Compressors are mounted to the chassis frame with an elastomer vibration isolator to minimize any vibration transfer to the building floor.

Refrigerant

Time proven R22 is used in the 30 and 40 sizes while R410 is used in the 60, 80 and 100 sizes.

R410 is now available for 30 and 40 sizes. Contact your local representative for information.

Product Design

Thermal Expansion Device

Omega Heat Pumps utilize a unique assembly of two piston flowcheck thermal expansion devices in the 30 and 40 unit sizes. The R410 units use reversible thermal expansion valves selected specifically for heat pump applications.

The piston flowcheck devices are precision machined brass assemblies consisting of a high pressure housing and a piston metering device. The piston is free to move, thus allowing free flow of refrigerant when it is moving in the reverse direction. The reversible thermal expansion valves are factory adjusted for optimum superheat in the cooling mode.

Reversing Valve

A high quality four-way reversing valve is installed in the heat pump to change refrigerant flow direction depending on whether heating or cooling is required.

Fluid to Refrigerant Coil

The coaxial fluid to refrigerant coil is a custom made heat transfer device consisting of a copper outer tube and a patented fluted copper inner tube. Fluid flow is opposite to the flow of refrigerant. The coaxial heat exchanger is a flat design which fits into the base of the chassis. The coils are designed for minimum pressure drop and are noted for their low fouling characteristics (although thorough system flushing and condenser water filtering is still necessary). The coils are selected for optimum subcooling in the cooling mode.

Product Design

Air to Refrigerant Coil

The air to refrigerant coil is a multi row coil with copper tubes and aluminum fins. The fin is designed to provide optimum heat transfer. The fins are mechanically bonded to the tubes. The coils are fully cased with a handy grip point for chassis removal.

Fan Section

The fan is a quiet yet powerful centrifugal forward curve direct drive design. It is fabricated with spot welded construction, finished painted, and installed in the unit with an easily removable band fastener.

Blower Motor

High efficiency three speed permanent split capacitor type (PSC) motors are used as standard. The motor is permanently lubricated and is factory wired with a terminal plug for easy disconnect.

ECM motors are also an available option to further increase fan operating efficiency.

Controls

Controls and relays are mounted on a single control board with factory wiring to connect plugs. The board can be removed in a matter of seconds. It is mounted on the front of the unit making it immediately accessible for diagnostics.

Product Design

Gold & Silver

It is said that "silence is golden". Recognizing this fact, the Golden series heat pump was designed to provide one of the quietest units in the industry. Its unique split casing design attenuates vibration and noise to NC levels at or below 36-37. Use the "GOLD" series HRP for acoustically sensitive applications.

The Silver series was developed with same quality components and manufacturing techniques as the Gold series, but utilizes a traditional solid casing design. Use the "SILVER" series HRP in less sensitive noise projects.

Testing and Quality

Omega employs state of the art manufacturing techniques, coupled with rigorous quality control procedures to guarantee every HRP is manufactured with the highest degree of reliability and consistency. The employment of Lean Six Sigma procedures results in efficient and cost effective manufacturing techniques driving a quality and highly competitive product. In the chassis production line, a 6 station QC system ensures that every stage of chassis production is tested, retested and guaranteed to pass. This testing also ensures that each unit complies with ARI published guidelines.

Design Notes

Engineering Design

Engineering Design

The water loop provides both a source and a sink of energy. You can conserve energy by effectively pumping heat from the warm areas of the builing to the cold ones. Consider a two-pipe closed loop water circuit, through which non-refrigerated water is circulated continuously throughout the building. In moderate weather, units serving the shady side of a building are often heating, while those serving the summer are cooling. When approximately one third of the units in operation are cooling, they add sufficient heat to the water loop so that it is not required to add or remove heat from the water loop.

When heating is required, the heat pumps will absorb heat from the loop circuit, whereas when cooling is required, the heat pump will reject heat to the loop circuit. Only in very cold weather (with most or all units heating) is it necessary to add heat to the water with a water heater. This is done when the temperature of the water loop falls to 65°F (18°C). The amount of this heat is reduced any time one or more units are operating on cooling. The central water heater is never larger than two thirds the size required in other systems but is usually less because of diversity.

A vertical stacking heat pump provides the essential benefits of a centralized system but gives the individual choice of heating or cooling. Additionally, the occupant may select heating, cooling, or may shut off the unit without affecting conditions maintained in other spaces. During hot weather with most or all units cooling, heat removed from the air is transferred to the water loop. A water tower rejects the excess heat outdoors to maintain a maximum water temperature of approximately 95°F.

Engineering Design Notes

15

Dimensional Drawings

Split Units with Acoustic Plenum (drawings not to scale, dimensions are subject to change)

Additional Notes:

- Temporary riser supports provided. (Contractor to supply riser clamps to support risers in multi-storey applications).
- Return air opening is on the front of the unit, rear right hand unit shown.
- Unit includes hose kits and shut off valves.

- Optional risers are made with type M copper, expanded connections are provided.
- Contractor to provided couplings where the piping is not swagged.

Dimensional Drawings

Additional Notes:

- Temporary riser supports provided. (Contractor to supply riser clamps to support risers in multi-storey applications).
- Return air opening is on the front of the unit, rear right hand unit shown.
- Unit includes hose kits and shut off valves.

- Risers are made with type M copper, expanded connections are provided.
- Contractor to provided couples where the piping is not swagged.

Dimensional Drawings

Riser Handing & Locations

Additional Notes:

- Temporary riser supports provided, contractor to supply clamps for multistory applications.
- Riser couplings are not provided, expanded connections are provided on 1 end of riser only.
- Riser Size: 0.75" to 4.00".

Legend:

- **S** = Supply Riser
- **C** = Condinsate Riser
- \mathbf{R} = Return Riser

- All handings determined facing returen air opening.
 - L = Left
 - **BL** = Back Left
 - BC = Back Center
 - **BR** = Back Right
 - \mathbf{R} = Right

Dimensional Drawings

Discharge Arrangements (drawings not to scale, dimensions are subject to change)

Additional Notes:

- Any combination of discharge arrangements are available (Max 3).
- LSB = Line of Site Baffles available when 2 or more discharge openings are on a unit (not applicable for top discharge units).
- Discharge Flanges are 0.5" deep. (DO NOT ATTACH GRILL OR DUCT WORK TO FLANGE ON SILVER UNITS!)
- All handings determined facing return air opening.
 - \mathbf{R} = Right
 - **B** = Back
 - **T** = Top
 - L = Left
 - **F** = Front

Dimensional Drawings

Acoustic Return Air Front Panel (drawings not to scale, dimensions are subject to change)

Model Size	Α	В	С	D
HRP 30	36.00″	18.00″	38.46″	20.36″
HRP 40	36.00"	18.00″	38.46″	20.36″
HRP 60	38.00"	20.00″	40.46″	22.36″
HRP 80	38.00"	24.00″	40.46″	26.36"
HRP 100	38.00″	24.00"	40.46"	26.36″

Dimensional Drawings

Acoustic Return Air Front Panel Furring Details (drawings not to scale, dimensions are subject to change)

Model Size	w	D	Return Air Opening (Width x Height)	A	B with Side Risers	B with Back Risers
HRP 30	16.00″	18.50″	14″ x 36″	18.25" min.	20.00″	24.00″
HRP 40	16.00″	18.50″	14″ x 36″	18.25" min.	20.00″	24.00″
HRP 60	18.00″	21.50″	16″ x 38″	20.25" min.	23.00″	27.00″
HRP 80	22.00″	25.50″	20″ x 38″	24.25" min.	27.00″	31.00″
HRP 100	22.00″	25.50″	20″ x 38″	24.25" min.	27.00″	31.00″

- **Additional Notes:**
- Return air panel supplied in standard powder coat white finish (custom finishes available).
- Drywall frame is to be mounted such that there is 0.5" maximum clearance between the heat pump return air flange and the return air panel. Mount the return air panel centered in front of the return air opening.
- For rear/side risers, allow an additional 5" clearance at the back/side of the units.
- Installing contractor must insulate the drywall enclosure with lined or coated acoustical insulation suitable for plenum use.

Dimensional Drawings

Perimeter Return Air Panel (drawings not to scale, dimensions are subject to change)

Model Size	Α	В	C	D
HRP 30	35.75″	17.75″	38.20″	20.20″
HRP 40	35.75″	17.75 ″	38.20″	20.20"
HRP 60	37.75″	19.75″	40.20″	22.20″
HRP 80	37.75″	23.75″	40.20″	26.20"
HRP 100	37.75″	23.75″	40.20″	26.20″

Dimensional Drawings

Perimeter Return Air Panel Furring Details (drawings not to scale, dimensions are subject to change)

Model Size	w	D	Return Air Opening (Width x Height)	A	B with Side Risers	B with Back Risers
HRP 30	16.00″	18.50″	14″ x 36″	18.25″ min.	18.25″	22.25″
HRP 40	16.00″	18.50″	14″ x 36″	18.25" min.	18.25″	22.25″
HRP 60	18.00″	21.50″	16″ x 38″	20.25" min.	21.25″	25.25″
HRP 80	22.00″	25.50″	20″ x 38″	24.25" min.	25.25″	29.25″
HRP 100	22.00″	25.50″	20″ x 38″	24.25" min.	25.25″	29.25″

Additional Notes:

- Return air panel supplied in standard powder coat white finish (custom finishes available).
- For rear/side risers, allow an additional 5" clearance at the back/side of the units.
- Drywall frame is to be mounted such that there is 0.5" maximum clearance between the heat pump return air flange and the return air panel. Mount the return air panel centered in front of the return air opening.
- Installing contractor must insulate the drywall enclosure with lined or coated acoustical insulation suitable for plenum use.

25

ISO Performance Data

Sizo	Pofria	Voltago	Water	Air	Water		Coo	ling		Heating			
5120	neniig.	voitage	Flow	Flow	P Drop	BTUH	WATT	СОР	EER	BTUH	WATT	СОР	
HRP 30 (³/₄ Ton)	R22	208-230/60/1	2.60 GPM	310 CFM	9' P.D.	9665	797	3.55	12.13	11767	810	4.26	
HRP 30 (³/₄ Ton)	R410	208-230/60/1	3.00 GPM	310 CFM	6' P.D.	9873	796	3.63	12.60	14100	944	4.37	
HRP 40 (1 Ton)	R22	208-230/60/1	3.51 GPM	475 CFM	12' P.D.	12195	989	3.61	12.33	16110	1081	4.37	
HRP 40 (1 Ton)	R410	208-230/60/1	3.13 GPM	475 CFM	7′ P.D.	13010	1000	3.81	13.26	16600	1114	4.37	
HRP 60 (1/2 Ton)	R410	208-230/60/1	4.60 GPM	600 CFM	14' P.D.	17600	1455	3.59	12.10	22600	1577	4.20	
HRP 80 (2 Ton)	R410	208-230/60/1	6.72 GPM	817 CFM	15' P.D.	23952	1766	3.98	13.56	30415	1964	4.54	
HRP 100 (2 ¹ / ₂ Ton)	R410	208-230/60/1	6.50 GPM	1006 CFM	15' P.D.	28326	2314	3.59	12.24	36501	2505	4.27	

Data certified in accordance with ISO Standard 13256-1. Cooling capacity based on 80.4°F DB and 66.3°F WB entering air with 86.05°F entering water temperature. Heating capacity based on 67.5oF DB entering air with 68.3°F entering water temperature.

**Sizes 30 and 40 use rotary compressors with R22. Sizes 60, 80 and 100 use scroll compressors with R410.

HRP 30 Performance Data

R22

			Cooling						Heating					
GPM (US GPM)	WPD (ft-H2O)	EWT (F)	LWT (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	60	80.2 74.8 71.1 70.1	10679 10889 10999 11054	7308 7452 7527 7565	722 706 674 667	14.79 15.42 16.32 16.56	13142 13297 13299 13331	50	38.8 41.5 43.4 43.8	9849 10278 10652 10706	755 773 786 789	3.82 3.90 3.97 3.98	7273 7640 7969 8014
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	70	90.0 84.6 80.9 80.1	10298 10500 10607 10660	7047 7186 7259 7295	793 776 741 733	12.98 13.53 14.32 14.54	13005 13147 13134 13162	60	47.8 50.7 51.7 52.7	10760 11228 11638 11696	823 843 857 860	3.83 3.91 3.98 3.99	7953 8350 8713 8762
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	80	99.8 94.5 90.8 90.0	9930 10177 10259 10280	6796 6964 7021 7035	862 843 805 797	11.51 12.01 12.74 12.90	12873 13054 13006 12999	70	56.6 59.9 62.1 62.6	11756 12267 12714 12778	897 918 934 937	3.84 3.92 3.99 4.00	8696 9133 9526 9581
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	85 1	05.1 99.5 95.8 95.0	9962 9992 10073 10093	6817 6838 6893 6907	918 897 856 848	10.86 11.14 11.76 11.90	13092 13053 12995 12986	80	65.3 68.9 71.3 71.9	12843 13402 13890 13960	968 922 1009 1012	3.89 3.96 4.03 4.04	9538 10017 10447 10507
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	90 1 1 1	09.7 04.4 00.7 99.9	9573 9761 9860 9910	6551 6680 6748 6782	954 933 891 882	10.03 10.46 11.07 11.24	12828 12944 12899 12918	85	69.6 73.3 75.9 76.5	13437 14021 14532 14605	1007 1031 1049 1052	3.91 3.98 4.06 4.07	10000 10501 10951 11014
1.3 1.8 2.4 2.6	2.3 4.3 7.6 9.0	100 1 1 1 1	19.6 14.3 10.7 09.9	9231 9413 9508 9556	6317 6441 6507 6540	1031 1008 962 952	8.96 9.34 9.88 10.03	12747 12851 12790 12805	90	73.9 77.8 80.4 81.1	14057 14668 15203 15280	1047 1073 1091 1095	3.93 4.01 4.08 4.09	10483 11008 11479 11545

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

FAT Wet Bulb	Total Cooling Multiplion	Sensible Cooling @ EAT Dry Bulb							
		75	80	85	90	95			
61	0.87	0.99	1 1 2						
64 67	0.93 1.00	0.86	1.12 1.00	1.25					
70 73	1.06 1.13		0.82	1.09 0.92	1.36 1.18	1.44			

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 30 Performance Data

R410

			Cooling										
GPM (US GPM)	WPD (ft-H2O)	EWT LWT (F) (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
1.3	1.2	60 80.0	10459	7311	783	13.36	13131	50	39.4	9644	809	3.49	6882
1.8	2.3	74.5	10659	7451	740	14.41	13183		41.9	10043	826	3.56	7224
2.4	4.1	71.0	10761	7522	719	14.97	13214		44.0	10180	832	3.59	7341
2.6	4.9	70.0	10795	7546	712	15.16	13225		44.3	10337	838	3.62	7479
1.3	1.2	70 90.0	10037	7016	806	12.45	12787	60	47.5	11065	866	3.74	8110
1.8	2.3	84.0	10229	7150	761	13.43	12827		50.5	11550	883	3.83	8537
2.4	4.1	80.5	10326	7218	740	13.95	12851		52.6	11810	889	3.89	8777
2.6	4.9	80.0	10359	7241	733	14.13	12860		53.2	11945	898	3.90	8880
1.3	1.2	80 99.8	9631	6733	830	11.61	12462	70	55.0	12569	923	3.99	9420
1.8	2.3	94.0	9815	6861	784	12.52	12490		59.0	13268	949	4.10	10032
2.4	4.1	90.5	9909	6927	762	13.00	12509		61.3	13680	954	4.20	10425
2.6	4.9	89.7	9914	6949	755	13.14	12489		62.0	13818	968	4.18	10514
1.3	1.2	85 105.0	9548	6692	891	10.72	12588	80	64.0	13576	990	4.02	10199
1.8	2.3	99.0	9731	6820	842	11.56	12571		38.0	14331	1017	4.13	10860
2.4	4.1	95.7	9824	6885	818	12.01	12615		70.6	14724	1032	4.18	11205
2.6	4.9	94.8	9827	6907	810	12.13	12591		71.2	14950	1035	4.23	11419
1.3	1.2	90 110.0	9397	6551	954	9.85	12653	85	69.0	14174	1019	4.08	10698
1.8	2.3	104.0	9576	6676	900	10.64	12648		72.0	14761	1040	4.16	11212
2.4	4.1	100.7	9665	6739	875	11.05	12649		75.0	14432	1063	4.25	11805
2.6	4.9	99.9	9696	6760	866	11.19	12651		75.7	15560	1065	4.28	11926
1.3	1.2	100 119.9	8983	6197	1020	8.81	12462	90	72.0	14497	1043	4.07	10937
1.8	2.3	114.0	9154	6315	962	9.51	12437		77.0	15512	1080	4.21	11827
2.4	4.1	110.5	9239	6375	935	9.88	12428		79.8	15937	1095	4.27	12201
2.6	4.9	109.7	9268	6395	926	10.01	12427		80.4	16120	1099	4.30	12370

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wat Pulb	Total Cooling Multiplier		Sensible Cooling @ EAT Dry Bulb								
		75	80	85	90	95					
61	0.87	0.99									
64	0.93	0.86	1.12								
67	1.00	0.75	1.00	1.25							
70	1.06		0.82	1.09	1.36						
73	1.13			0.92	1.18	1.44					

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 40 Performance Data

R22

					Cooli	ng								
GPM (US GPM)	WPD (ft-H2O)	EWT (F)	LWT (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	60	78.8 73.4 69.8 69.3	13148 13407 13543 13611	10072 10271 10343 10427	831 813 776 768	15.82 16.50 17.46 17.72	15983 16179 16189 16231	50	38.3 41.3 43.4 43.8	13190 13764 14265 14337	939 962 979 982	4.12 4.19 4.27 4.28	9985 10481 10926 10988
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	70	88.5 83.3 79.6 79.1	12679 12928 13060 13125	9713 9904 10005 10055	913 893 852 844	13.88 14.48 15.32 15.55	15795 15975 15968 16005	60	47.2 50.5 52.8 53.1	14410 15037 15585 15663	1024 1048 1067 1070	4.13 4.20 4.28 4.29	10916 11459 11945 12013
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	80	98.3 93.2 89.5 89.0	12227 12530 12632 12657	9366 9599 9677 9696	993 971 927 917	12.32 12.91 13.63 13.80	15613 15842 15793 15787	70	56.0 59.6 62.1 62.5	15743 16428 17026 17112	1116 1143 1163 1166	4.13 4.21 4.29 4.30	11935 12528 13060 13133
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	85	103.6 98.1 94.5 94.0	12265 12303 12402 12427	9396 9425 9501 9520	1056 1033 986 976	11.61 11.91 12.58 12.73	15868 15826 15765 15757	80	64.6 68.6 71.3 71.8	17199 17947 18601 18695	1205 1234 1256 1259	4.18 4.26 4.34 4.35	13087 13736 14317 14398
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	90	108.2 103.0 99.4 99.0	11786 12018 12140 12201	9029 9207 9300 9347	1098 1074 1025 1015	10.73 11.19 11.84 12.02	15533 15682 15638 15664	85	69.6 73.3 75.9 76.5	13437 14021 14532 14605	1007 1031 1049 1052	3.91 3.98 4.06 4.07	10000 10501 10951 11014
1.7 2.4 3.3 3.5	2.8 5.6 10.6 12.0	100	118.1 112.9 109.3 108.9	11366 11589 11707 11766	8707 8878 8969 9014	1186 1160 1107 1096	9.58 9.99 10.57 10.73	15413 15546 15484 15506	90	73.1 77.4 80.5 81.0	18825 19644 20360 20462	1303 1335 1358 1362	4.23 4.31 4.39 4.40	14377 15089 15726 15814

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wet Bulb	Total Cooling Multiplier	Sensible Cooling @ EAT Dry Bulb								
		75	80	85	90	95				
61	0.87	0.99								
64	0.93	0.86	1.12							
67	1.00	0.75	1.00	1.25						
70	1.06		0.82	1.09	1.36					
73	1.13			0.92	1.18	1.44				

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 40 Performance Data

R410

					Cooli	ng								
GPM (US GPM)	WPD (ft-H2O)	EWT (F)	LWT (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	60	80.0 74.5 70.4 70.0	13846 14067 14219 14238	9627 9780 9905 9936	992 946 910 902	13.96 14.87 15.39 15.79	17230 17294 17326 17315	50	40.0 42.8 44.6 44.9	11553 11870 12228 12286	962 975 989 996	3.52 3.57 3.62 3.65	8271 8543 8754 8889
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	70	90.0 84.2 80.3 79.7	13238 13491 13620 13663	9238 9415 9505 9535	1021 964 937 928	12.97 13.99 14.35 14.72	16721 16781 16818 16831	60	48.6 51.4 53.7 54.0	13418 13896 14120 14222	1031 1046 1060 1068	3.81 3.86 3.90 3.90	9899 10218 10503 10580
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	80	99.7 93.4 90.0 89.3	12703 12987 13111 13152	8865 9063 9150 9179	1051 983 956 947	12.09 13.04 13.55 13.89	16288 16342 16372 16383	70	56.8 60.1 62.4 62.8	15223 15854 16289 16437	1098 1121 1137 1145	4.06 4.14 4.20 4.21	11475 12028 12410 12531
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	85 1	104.8 99.0 95.0 94.4	12627 12868 12991 13032	8812 8980 9094 9123	1128 1066 1026 1017	11.19 11.92 12.54 12.86	16476 16505 16534 16542	80	65.7 69.3 71.8 72.2	16456 17138 17608 17716	1178 1203 1219 1228	4.09 4.18 4.23 4.23	12437 13035 13448 13528
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	90 1 1 1	110.0 104.0 100.0 99.4	12462 12699 12859 12900	6551 6676 6760 6781	1209 1141 1097 1087	10.31 11.13 11.57 11.87	16586 16591 16604 16608	85	70.0 73.7 76.5 77.0	16919 17620 18103 18294	1209 1234 1251 1266	4.10 4.18 4.24 4.24	12793 13408 13833 13974
1.7 2.4 3.3 3.5	2.0 4.0 7.6 8.6	100 1 1 1	119.7 113.7 110.0 109.2	11914 12141 12294 12333	6197 6315 6395 6415	1292 1219 1173 1161	9.22 9.96 10.35 10.62	16321 16300 16295 16295	90	74.7 78.3 80.0 81.5	17855 18595 18105 19393	1253 1279 1297 1315	4.18 4.26 4.32 4.32	13580 14230 14680 14907

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wat Bulb	Total Cooling Multiplion	Sensible Cooling @ EAT Dry Bulb								
		75	80	85	90	95				
61	0.87	0.99								
64	0.93	0.86	1.12							
67	1.00	0.75	1.00	1.25						
70	1.06		0.82	1.09	1.36					
73	1.13			0.92	1.18	1.44				

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 60 Performance Data

R410

					Cooli	ng								
GPM (US GPM)	WPD (ft-H2O)	EWT (F)	LWT (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	60	77.6 72.3 72.0 69.3	19204 19582 19780 19880	14640 14928 15080 15156	1328 1298 1239 1227	14.5 15.1 16.0 16.2	23733 24011 24008 24066	50	41.8 44.0 44.2 45.4	15812 16425 16466 16851	1377 1405 1408 1423	3.37 3.43 3.43 3.47	11114 11630 11664 11994
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	70	87.4 82.2 81.9 79.1	18519 18883 19075 19170	14118 14396 14542 14615	1459 1427 1362 1348	12.7 13.2 14.0 14.2	23496 23750 23721 23771	60	50.6 53.2 53.3 54.7	17724 18411 18457 18889	1462 1492 1495 1511	3.55 3.62 3.62 3.66	12736 13321 13359 13732
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	80	97.3 92.1 91.8 89.0	17858 18302 18450 18486	13614 13953 14065 14093	1586 1551 1480 1466	11.3 11.8 12.5 12.6	23268 23592 23500 23487	70	59.2 62.2 62.3 63.9	19867 20699 20751 21272	1552 1587 1590 1612	3.75 3.82 3.82 3.87	14571 15283 15327 15771
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	85	101.6 96.8 96.5 94.1	16822 17619 17708 18150	12895 13432 13500 13837	1630 1572 1567 1559	10.3 11.2 11.3 11.6	22383 22982 23054 23470	80	67.8 71.1 71.3 73.1	22162 23114 23174 23803	1649 1691 1695 1721	3.94 4.01 4.01 4.05	16535 17343 17394 17929
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	90	107.1 101.9 101.7 99.9	17215 17554 17732 17821	13124 13382 13518 13586	1730 1670 1631 1622	10.0 10.5 10.9 11.0	23118 23252 23296 23353	85	72.0 75.6 75.8 77.7	23328 24382 2443 25100	1700 1746 1749 1778	4.02 4.09 4.09 4.14	17527 18424 18476 19033
2.7 3.9 4.0 5.2	6.4 13.3 14.0 23.0	100	117.0 111.9 111.6 108.9	16601 16927 17099 16185	12656 12905 13036 13101	1870 1806 1765 1751	8.9 9.4 9.7 9.8	22983 23091 23122 23160	90	76.3 80.0 80.2 82.2	24533 25667 26448 25732	1753 1803 1807 1838	4.10 4.17 4.17 4.22	18550 19516 19571 20176

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wet Bulb	Total Cooling Multiplier	Sensible Cooling @ EAT Dry Bulb								
		75	80	85	90	95				
61	0.87	0.99								
64	0.93	0.86	1.12							
67	1.00	0.75	1.00	1.25						
70	1.06		0.82	1.09	1.36					
73	1.13			0.92	1.18	1.44				

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 80 Performance Data

R410

				Cooli	ng								
GPM (US GPM)	WPD (ft-H2O)	EWT LWT (F) (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
3.4	3.8	60 78.2	25311	19484	1649	15.35	30935	50	38.6	25293	1757	4.22	19298
4.9	7.9	72.7	25809	19867	1612	16.01	31308		41.7	26393	1799	4.30	20253
6.5	13.9	69.6	26071	20068	1539	16.94	31321		43.5	27355	1830	4.38	21109
6.7	15.0	69.3	26202	20169	1524	17.20	31400		43.7	27493	1836	4.39	21228
3.4	3.8	70 87.9	24408	18788	1812	13.47	30589	60	47.6	27633	1915	4.23	21098
4.9	7.9	82.6	24888	19158	1771	14.05	30932		51.0	28834	1961	4.31	22143
6.5	13.9	79.5	25141	19352	1691	14.87	30910		52.9	29886	1995	4.39	23078
6.7	15.0	79.2	25267	19450	1674	15.09	30979		53.1	30036	2001	4.40	23208
3.4	3.8	80 97.8	23537	18118	1969	11.95	30255	70	56.4	30189	2087	4.24	23067
4.9	7.9	92.5	24122	18568	1925	12.53	30691		60.1	31501	2137	4.32	24208
6.5	13.9	89.4	24317	18718	1838	13.23	30588		62.2	32650	2174	4.40	25230
6.7	15.0	89.1	24366	18756	1820	13.39	30574		62.4	32814	2181	4.41	25372
3.4	3.8	85 102.8	23110	17789	2095	11.03	30256	80	65.0	32981	2171	4.45	25574
4.9	7.9	97.5	23684	18231	2048	11.56	30672		69.0	34415	2223	4.54	26830
6.5	13.9	94.4	23875	18378	1955	12.21	30546		71.4	35670	2261	4.62	27954
6.7	15.0	94.0	23923	18415	1936	12.36	30528		71.6	35849	2268	4.63	28110
3.4	3.8	90 107.7	22690	17466	2179	1042	30123	85	69.2	34505	2258	4.48	26802
4.9	7.9	102.4	23136	17809	2130	10.86	30404		73.5	36005	2312	4.56	28117
6.5	13.9	99.3	23371	17990	2034	11.49	30309		76.0	37318	2352	4.65	29293
6.7	15.0	99.0	23488	18081	2013	11.67	30358		76.2	37506	2359	4.66	29456
3.4	3.8	100 117.5	21880	16843	2332	9.38	29837	90	73.5	36099	2348	4.51	28088
4.9	7.9	112.2	22311	17174	2252	9.91	29995		78.0	37669	2404	4.59	29465
6.5	13.9	109.2	22537	17348	2201	10.24	30046		80.6	39042	2446	4.68	30696
6.7	15.0	108.9	22650	17435	2175	10.42	30069		80.8	39238	2453	4.69	30867

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wat Pulb	Total Cooling Multiplier	Sensible Cooling @ EAT Dry Bulb							
		75	80	85	90	95			
61 64 67 70	0.87 0.93 1.00 1.06	0.99 0.86 0.75	1.12 1.00 0.82	1.25	1 26				
73	1.13		0.02	0.92	1.18	1.44			

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

HRP 100 Performance Data

R410

		Cooling												
GPM (US GPM)	WPD (ft-H2O)	EW (F)	F LWT (F)	TOT (BTUH)	SEN (BTUH)	WATT	EER	THR (BTUH)	EWT (F)	LWT (F)	TOT (BTUH)	WATT	СОР	THA (BTUH)
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	60	77.5 72.5 71.7 69.4	30523 31123 31439 31597	23184 23640 23880 24000	2114 2067 1973 1954	14.44 15.06 15.93 16.17	37735 38175 38171 38262	50	39.3 42.0 42.2 43.7	31018 32367 33547 33716	2318 2374 2415 2422	3.92 4.00 4.07 4.08	23109 24268 25307 25451
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	70	87.3 82.3 81.6 79.3	29434 30012 30317 30469	22357 22796 23028 23144	2323 2271 2168 2147	12.67 13.21 13.98 14.19	37359 37762 37715 37794	60	48.2 51.3 51.5 53.1	33888 35361 36650 36834	2526 2587 2632 2640	3.93 4.01 4.08 4.09	25267 26534 27670 27827
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	80	97.2 92.3 91.5 89.2	28383 29089 29324 29382	21559 22095 22273 22318	2525 2469 2357 2334	11.24 11.78 12.44 12.59	36998 37512 37365 37344	70	57.2 60.5 60.9 62.5	37022 38632 39260 40242	2753 2820 2834 2877	3.94 4.02 4.06 4.10	27627 29011 29590 30424
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	85	101.5 96.98 96.28 94.21	26737 28004 28145 28848	20309 21271 21378 21912	2595 2502 2495 2483	10.30 11.19 11.28 11.62	35591 36542 36657 37319	80	65.9 69.6 69.8 71.8	40447 42205 43744 43964	2974 3045 3098 3107	3.99 4.06 4.14 4.15	30300 31815 33173 33361
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	90	107.1 102.2 101.4 99.1	27362 27900 28183 28325	20783 21192 21407 21514	2755 2659 2697 2582	9.93 10.49 10.85 10.97	36760 36973 37043 37133	85	70.2 74.1 74.3 76.4	43215 44155 45765 45995	3093 3167 3222 3232	4.01 4.09 4.16 4.17	31763 33349 34771 34968
4.3 6.1 6.5 8.1	6.5 13.0 15.0 23.0	100	117.0 112.1 111.3 109.1	26385 26904 27177 27314	20041 20436 20643 20747	2978 2876 2811 2788	8.86 9.35 9.67 9.80	36547 36718 36767 36827	90	74.5 78.5 78.8 80.9	44270 46195 47879 48120	3216 3294 3351 3361	4.03 4.11 4.19 4.20	33296 34957 36446 36652

Cooling capacity based on 80°F DB and 67°F WB entering air. Heating capacity based on 70°F DB entering air.

Cooling Capacity Multipliers for Entering Air Temperatures

EAT Wet Bulb	Total Cooling Multiplier	Sensible Cooling @ EAT Dry Bulb							
		75	80	85	90	95			
61	0.87	0.99							
64	0.93	0.86	1.12						
67	1.00	0.75	1.00	1.25					
70	1.06		0.82	1.09	1.36				
73	1.13			0.92	1.18	1.44			

Entering Air Temp (°F)	55	60	65	70	75	80	85
Multiplier	1.04	1.03	1.01	1.00	0.99	0.97	0.95

Performance Data Notes

HRP Wiring Diagram

37

HRP Wiring Diagram

Electrical Data

UNIT SIZE	COMPRESSOR RLA	COMPRESSOR LRA	FAN MOTOR FLA	МОР	МСА	CIRCUIT BREAKER
HRP 30	3.80 A	20.0 A	1.00 A	15 A	5.80 A	15 A
HRP 40	4.80 A	26.3 A	1.00 A	15 A	7.00 A	15 A
HRP 60	10.20 A	51.0 A	1.50 A	20 A	14.30 A	15 A
HRP 80	12.80 A	60.0 A	2.10 A	30 A	18.10 A	20 A
HRP 100	14.70 A	72.5 A	2.60 A	35 A	21.00 A	30 A

Additional Notes:

- Minimum voltage 200 V. Operating voltage 208-240 V single phase.
- RLA Rated load amps; LRA Locked rotor amps; FLA Full load amps.
- MOP Maximum overcurrent protection = (2.25 x RLA) + Fan FLA.
- MCA Minimum circuit ampacity = (1.25 x RLA) + Fan FLA.
- Adhere to all applicable electrical codes.

Acoustic Data

Omega Gold & Silver Series Heat pumps were tested by an independent sound consultant and found to be 30% quieter than industry standard. The graph below shows the results of the sound test. Industry standard water source heat pump is shown

with the dotted line, the solid line shows the Omega Gold & Silver Series sound data. Note that actual SPL measurements may vary due to installation conditions.

Omega Gold & Silver Series vs. The Industry Standard

Specifications

Part One: General

1.1 General

1.1.1. Conform to General Provisions For Mechanical Divisions Section _____ and Basic Materials and Methods Section _____.

1.2 Submittals

- **1.2.1.** Submit shop drawings and product data in accordance with Section ______.
- **1.2.2.** Indicate the following: complete specifications; wiring diagrams (showing all interconnections); weight; performance details.
- **1.2.3.** Provide data for inclusion in the Operating and Maintenance manuals in accordance with Section ______.

Part Two: Products

2.1 General

- **2.1.1.** Vertical stacked heat pump units shall be HTS Omega (Gold & Silver) Series. Units shall provide scheduled capacities at the ampacity and voltage specified.
- **2.1.2.** The cabinet shall be 20 gauge galvanized steel. Weld internal components for rigidity. Insulate internal surfaces with 1" thick acoustic and thermal mould resistant insulation.
- 2.1.3. (OPTIONAL GOLD UNITS) Cabinet shall be sectionalized for acoustic and installation purposes. Lower section shall have risers attached to it, house supply fan and removable chassis. Upper section shall be an acoustic discharge plenum with 1" thick 3.5 lbs. density, mould resistant, neoprene lined and mechanically fastened acoustic insulation on all inside surfaces. Discharge plenum shall be designed to be fastened to the underside of the concrete slab with (factory)(field) cut discharge openings. There shall be no rigid connection between the upper and lower cabinet sections. Provide a factory installed flexible connection between the upper and lower sections. Ensure mating surfaces of the canvas connection overlap by at least two inches and are glued together. Provide "S" cleat to join upper and lower plenums to the metal portion of the flex connection. Fasten metal portion of the flex connection with sheet metal screws thru the "S" cleat into the metal of the plenums. Heat pump manufacturer shall factory attach flexible connection to the discharge plenum section. Installing contractor shall make the final connection of the flexible connection to the lower cabinet section with field provided sheet metal screws into the factory installed "S" cleat.
- **2.1.4**. The drain pan shall be 16 gauge (galvanized steel coated with mastic) (stainless steel). Provide a 7/8 OD copper drain connection.
- **2.1.5.** Provide direct drive fan and motor assembly with internally overload protected, permanent split capacitor, oil lubricated motor. Units shall be supplied with three speed fan motors. Fan motors are factory wired to high speed.

Specifications

- **2.1.6.** Factory installed supply and return risers shall be (Type M) (Type L) copper, with two combination balancing and shut off ball valves inside the cabinet. Valves shall be brass and rated for 400 PSI . Provide (3/4" internal)(external) condensate riser factory installed. Risers sizes shall be as shown on the plans.
- **2.1.7**. Provide high temperature, high pressure water hoses for connection of the risers to the chassis. Hoses supplied shall be constructed with an inner core of rubber, a metal braided covering and an outer rubber coating. Fittings shall be brass construction. Hoses shall carry a pressure rating of 2000 PSIG. Steel braided hoses without the outer rubber covering are not acceptable.
- **2.1.8**. The compressor chassis shall be mounted on 12 gauge slide rails. The chassis shall be isolated from the cabinet. Compressor shall have an acoustical enclosure ensuring compressor noise is isolated from air stream. Provide plug type electrical connections so that the chassis can be easily removed from the front of the cabinet for service.
- **2.1.9**. The refrigeration circuit shall have two Schrader service valves extended to the top of the compressor enclosure. The service valves shall be accessible without removing the chassis. The refrigerant circuit shall contain reversing valve and refrigerant metering device arranged for reversing refrigerant flow.
- **2.1.10**. Compressor shall be hermetically sealed type with internal thermal overload protection. Compressor shall be mounted on RIS isolation.
- **2.1.11**. Air side coils shall have copper tubes mechanically bonded to aluminum fins. Coils shall be sized to meet scheduled performance for cooling and heating. Provide 1" T/A filter on coil face.
- **2.1.12**. Water side heat exchanger shall be coaxial type with steel outer tube and copper inner tube. Condenser shall be rated at 400 PSI water side and 450 PSI refrigerant side.
- **2.1.13**. Each unit shall be supplied with double deflection supply grilles as shown on the plans.
- **2.1.14**. Each unit shall have (Acoustic) (Perimeter) return air acoustical panel. Panel shall be insulated with acoustical insulation. Panel shall be easily removable without tools to allow access for filter and disconnect. Panel shall be flush mounted on the drywall.
- **2.1.15**. Unit mounted control enclosure shall contain: controls for compressor, reversing valve and fan motor; 24 volt control power transformer; terminal block for low voltage field wiring connection; terminal block for main electrical connection; (optional) unit mounted disconnect switch. Operating and safety controls shall include: low suction pressure; high discharge pressure lock out switch; compressor overload; supply fan overload. Reset of safety devices shall be accomplished by interrupting power supply to the unit. All control components, except CPT and reversing valve, shall be mounted on a circuit board with plug in quick connects to components they are controlling. Compressor capacitor shall be located in the control panel. Relays and capacitors shall be located within the acoustic compressor enclosure.

Specifications

2.1.16.

Thermostats shall be (unit) (remote) mounted. Thermostat shall have a minimum 5-minute off time between compressor starts. Thermostats shall be:

- Manual changeover low voltage for cooling and heating operation. Subbase shall have system "Heat-Off-Cool" and fan "On-Auto" switches.
- Automatic changeover low voltage for cooling and heating operation. Subbase shall have system "Off-Auto" and fan "On-Auto" switches.
- Programmable microelectronic for cooling and heating, night setback, night setup, and day/night time clock operation. Thermostat shall have system "On-Off", temperature "Heat-Auto-Cool" and fan "On-Auto" switches.
- **2.1.17**. Warranty shall be for 1 year not to exceed 18 months from date of shipment for parts only. (Optional) Provide 5 year compressor replacement parts warranty only. (Optional) Provide 5 year complete refrigerant circuit parts and labour warranty.

Part Three: Execution

3.1 Installation

- **3.1.1** Install units on neoprene vibration isolation pads.
- **3.1.2**. Install all units neat and level following manufacturer instructions.
- **3.1.3**. Installing contractor shall supply and install conection fittings to units. The flare fittings should be connected in a fashion matching industry standards. (Finger tight plus 1/4 turn with wrench.)
- **3.1.4** (Add for Gold units). Installing contractor shall make the final connection of the flexible connection to the lower cabinet section with field provided sheet metal screws into the factor installed "S" cleat.
- **3.1.5**. Flush the system per manufacturer instructions before connecting chassis water connections to risers.
- **3.1.6**. Furnish the services of a trained representative of the equipment manufacturer to supervise the startup of units.

Start Up Procedures

The following is designed to guide you through the process of flushing the HRP system. Failure to perform any of the steps below will result in the termination of the manufacture's warranty.

- Prior to first operation of any HRP unit, the water circulating system must be cleaned and flushed of all construction dirt and debris. The chassis cannot be connected to system when flushing is being conducted. Supply and return pipes must be interconnected with factory supplied hoses to properly flush system. This will prevent the introduction of dirt into the chassis.
- **2** Before filling installer should ensure all flare fitting connections to the heat pumps meet industry standards. (Finger tight plus 1/4 turn with wrench.)
- Fill system at city water makeup connection with all air vents open. After filling close all air vents assure that boiler and heat rejector are off but flow is allowed through each. The installer/contractor should start main circulating pump with pressure reducing makeup valve open. Check vents in sequence to bleed off any trapped air, assuring circulation through all components of the system.
- 4 Shut off circulating pump and open all drains and vents to completely drain the system. Short circuited supply and return runouts should now be connected to the HRP unit with factory supplied supply and return hoses. Teflon tape is recommended instead of pipe dope for pipe thread connections. Use no sealers at the swivel flare connections of hoses.

5 Trisodium phosphate is recommended as a cleaning agent during flushing. However, many localities prohibit the introduction of phosphates into their sewage systems. The current recommendation is to contact your local water treatment specialist.

- 6 Refill the system with clean water. Test with litmus paper for acidity, and treat as required to leave the water slightly alkaline (pH 7.5 to 8.5). The specified percentage of antifreeze may also be added at this time. Use commercial grade antifreeze designed for HVAC systems only. Do not use automotive grade antifreeze.
- Installing contractor to provide written confirmation that the system was properly flushed and balanced. An independent flushing & balancing agency must be used. Once this is complete a proper start can be completed by HRP start-up contractor.
- Set the system heat add setpoint to 70°F (27°C) and the heat rejection setpoint to 85°F (29°C). Supply power to all motors and start the circulating pumps. After full flow has been established through all components including the heat rejector (regardless of season) and air vented and loop temperatures stabilized, each of the HRP units will be ready for check, test and start-up and for air and water balancing.

Standard Warranty

Standard Warranty shall be for 1 year not to exceed 18 months from date of shipment for parts only.

Contact

Omega Heat Pump Incorporated

www.omega-heatpump.com